Recent years have witnessed an astonishing explosion in the evolution of mobile applications powered by AI technologies. The rapid growth of AI frameworks enables the transition of AI technologies to mobile devices, significantly prompting the adoption of AI apps (i.e., apps that integrate AI into their functions) among smartphone devices. In this paper, we conduct the most extensive empirical study on 56,682 published AI apps from three perspectives: dataset characteristics, development issues, and user feedback and privacy. To this end, we build an automated AI app identification tool, AI Discriminator, that detects eligible AI apps from 7,259,232 mobile apps. First, we carry out a dataset analysis, where we explore the AndroZoo large repository to identify AI apps and their core characteristics. Subsequently, we pinpoint key issues in AI app development (e.g., model protection). Finally, we focus on user reviews and user privacy protection. Our paper provides several notable findings. Some essential ones involve revealing the issue of insufficient model protection by presenting the lack of model encryption, and demonstrating the risk of user privacy data being leaked. We published our large-scale AI app datasets to inspire more future research.
translated by 谷歌翻译
在这项工作中,我们提出了一个新颖的观点,以解决贴片正确性评估的问题:正确的贴片实现了“答案”对越野车行为提出的问题的变化。具体而言,我们将贴片正确性评估变成一个问题回答问题。为了解决这个问题,我们的直觉是,自然语言处理可以提供必要的表示和模型来评估错误(问题)和补丁(答案)之间的语义相关性。具体而言,我们认为是输入错误报告以及生成的补丁的自然语言描述。我们的方法,Quatrain,首先考虑了最先进的消息生成模型,以生成与每个生成的补丁相关的相关输入。然后,我们利用神经网络体系结构来学习错误报告和提交消息之间的语义相关性。针对三个错误数据集生成的9135个补丁的大数据集(缺陷4J,Bugs.s.s.jar和Bears)的实验表明,Quatrain可以在预测补丁的正确性时达到0.886的AUC,并在过滤62%的62%错误的补丁时召回93%正确的补丁。我们的实验结果进一步证明了投入质量对预测性能的影响。我们进一步执行实验,以强调该模型确实了解了错误报告与预测的代码更改描述之间的关系。最后,我们与先前的工作进行比较,并讨论我们方法的好处。
translated by 谷歌翻译
源代码的表示学习对于将机器学习应用于软件工程任务至关重要。已经显示,跨不同编程语言的学习代码表示比从单语言数据集中学习更有效,因为来自多语言数据集的更多培训数据可提高该模型从源代码中提取语言 - 不平衡信息的能力。但是,现有的多语言模型忽略了特定于语言的信息,这对于在多语言数据集中培训的下游任务至关重要,同时仅着眼于学习不同语言之间的共享参数。为了解决这个问题,我们提出了MetatPtrans,这是一种用于多语言代码表示学习的元学习方法。 MetAtPtrans根据输入源代码段的特定编程语言为特征提取器生成不同的参数,从而使模型能够同时学习语言 - 语言和特定于语言的信息。实验结果表明,MetAtPtrans可将最新方法的F1得分显着提高到2.40个百分点,以汇总代码摘要,这是一项语言不可或缺的任务;以及TOP-1(TOP-5)的预测准确性高达7.32(13.15)百分点,以完成代码完成,这是一项特定于语言的任务。
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
Humans have internal models of robots (like their physical capabilities), the world (like what will happen next), and their tasks (like a preferred goal). However, human internal models are not always perfect: for example, it is easy to underestimate a robot's inertia. Nevertheless, these models change and improve over time as humans gather more experience. Interestingly, robot actions influence what this experience is, and therefore influence how people's internal models change. In this work we take a step towards enabling robots to understand the influence they have, leverage it to better assist people, and help human models more quickly align with reality. Our key idea is to model the human's learning as a nonlinear dynamical system which evolves the human's internal model given new observations. We formulate a novel optimization problem to infer the human's learning dynamics from demonstrations that naturally exhibit human learning. We then formalize how robots can influence human learning by embedding the human's learning dynamics model into the robot planning problem. Although our formulations provide concrete problem statements, they are intractable to solve in full generality. We contribute an approximation that sacrifices the complexity of the human internal models we can represent, but enables robots to learn the nonlinear dynamics of these internal models. We evaluate our inference and planning methods in a suite of simulated environments and an in-person user study, where a 7DOF robotic arm teaches participants to be better teleoperators. While influencing human learning remains an open problem, our results demonstrate that this influence is possible and can be helpful in real human-robot interaction.
translated by 谷歌翻译
We introduce a new tool for stochastic convex optimization (SCO): a Reweighted Stochastic Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density. Combining ReSQue with recent advances in ball oracle acceleration [CJJJLST20, ACJJS21], we develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings. For a SCO objective constrained to the unit ball in $\mathbb{R}^d$, we obtain the following results (up to polylogarithmic factors). We give a parallel algorithm obtaining optimization error $\epsilon_{\text{opt}}$ with $d^{1/3}\epsilon_{\text{opt}}^{-2/3}$ gradient oracle query depth and $d^{1/3}\epsilon_{\text{opt}}^{-2/3} + \epsilon_{\text{opt}}^{-2}$ gradient queries in total, assuming access to a bounded-variance stochastic gradient estimator. For $\epsilon_{\text{opt}} \in [d^{-1}, d^{-1/4}]$, our algorithm matches the state-of-the-art oracle depth of [BJLLS19] while maintaining the optimal total work of stochastic gradient descent. We give an $(\epsilon_{\text{dp}}, \delta)$-differentially private algorithm which, given $n$ samples of Lipschitz loss functions, obtains near-optimal optimization error and makes $\min(n, n^2\epsilon_{\text{dp}}^2 d^{-1}) + \min(n^{4/3}\epsilon_{\text{dp}}^{1/3}, (nd)^{2/3}\epsilon_{\text{dp}}^{-1})$ queries to the gradients of these functions. In the regime $d \le n \epsilon_{\text{dp}}^{2}$, where privacy comes at no cost in terms of the optimal loss up to constants, our algorithm uses $n + (nd)^{2/3}\epsilon_{\text{dp}}^{-1}$ queries and improves recent advancements of [KLL21, AFKT21]. In the moderately low-dimensional setting $d \le \sqrt n \epsilon_{\text{dp}}^{3/2}$, our query complexity is near-linear.
translated by 谷歌翻译
We study the task of learning state representations from potentially high-dimensional observations, with the goal of controlling an unknown partially observable system. We pursue a direct latent model learning approach, where a dynamic model in some latent state space is learned by predicting quantities directly related to planning (e.g., costs) without reconstructing the observations. In particular, we focus on an intuitive cost-driven state representation learning method for solving Linear Quadratic Gaussian (LQG) control, one of the most fundamental partially observable control problems. As our main results, we establish finite-sample guarantees of finding a near-optimal state representation function and a near-optimal controller using the directly learned latent model. To the best of our knowledge, despite various empirical successes, prior to this work it was unclear if such a cost-driven latent model learner enjoys finite-sample guarantees. Our work underscores the value of predicting multi-step costs, an idea that is key to our theory, and notably also an idea that is known to be empirically valuable for learning state representations.
translated by 谷歌翻译
Video semantic segmentation (VSS) is beneficial for dealing with dynamic scenes due to the continuous property of the real-world environment. On the one hand, some methods alleviate the predicted inconsistent problem between continuous frames. On the other hand, other methods employ the previous frame as the prior information to assist in segmenting the current frame. Although the previous methods achieve superior performances on the independent and identically distributed (i.i.d) data, they can not generalize well on other unseen domains. Thus, we explore a new task, the video generalizable semantic segmentation (VGSS) task that considers both continuous frames and domain generalization. In this paper, we propose a class-wise non-salient region generalized (CNSG) framework for the VGSS task. Concretely, we first define the class-wise non-salient feature, which describes features of the class-wise non-salient region that carry more generalizable information. Then, we propose a class-wise non-salient feature reasoning strategy to select and enhance the most generalized channels adaptively. Finally, we propose an inter-frame non-salient centroid alignment loss to alleviate the predicted inconsistent problem in the VGSS task. We also extend our video-based framework to the image-based generalizable semantic segmentation (IGSS) task. Experiments demonstrate that our CNSG framework yields significant improvement in the VGSS and IGSS tasks.
translated by 谷歌翻译
Fine-grained visual parsing, including fine-grained part segmentation and fine-grained object recognition, has attracted considerable critical attention due to its importance in many real-world applications, e.g., agriculture, remote sensing, and space technologies. Predominant research efforts tackle these fine-grained sub-tasks following different paradigms, while the inherent relations between these tasks are neglected. Moreover, given most of the research remains fragmented, we conduct an in-depth study of the advanced work from a new perspective of learning the part relationship. In this perspective, we first consolidate recent research and benchmark syntheses with new taxonomies. Based on this consolidation, we revisit the universal challenges in fine-grained part segmentation and recognition tasks and propose new solutions by part relationship learning for these important challenges. Furthermore, we conclude several promising lines of research in fine-grained visual parsing for future research.
translated by 谷歌翻译
Fine-grained visual recognition is to classify objects with visually similar appearances into subcategories, which has made great progress with the development of deep CNNs. However, handling subtle differences between different subcategories still remains a challenge. In this paper, we propose to solve this issue in one unified framework from two aspects, i.e., constructing feature-level interrelationships, and capturing part-level discriminative features. This framework, namely PArt-guided Relational Transformers (PART), is proposed to learn the discriminative part features with an automatic part discovery module, and to explore the intrinsic correlations with a feature transformation module by adapting the Transformer models from the field of natural language processing. The part discovery module efficiently discovers the discriminative regions which are highly-corresponded to the gradient descent procedure. Then the second feature transformation module builds correlations within the global embedding and multiple part embedding, enhancing spatial interactions among semantic pixels. Moreover, our proposed approach does not rely on additional part branches in the inference time and reaches state-of-the-art performance on 3 widely-used fine-grained object recognition benchmarks. Experimental results and explainable visualizations demonstrate the effectiveness of our proposed approach. The code can be found at https://github.com/iCVTEAM/PART.
translated by 谷歌翻译